NOTES ON α-BLOCH SPACE AND $D_{p}(\mu)$

Gye Tak Yang* and Ki Seong Choi**

Abstract

In this paper, we will show that if μ is a Borel measure on the unit disk D such that $\int_{D} \frac{d \mu(z)}{\left(1-|z|^{2}\right)^{p \alpha}}<\infty$ where $0<\alpha, p<\infty$, then a bounded sequence of functions $\left\{f_{n}\right\}$ in the α-Bloch space \mathfrak{B}_{α} has a convergent subsequence in the space $D_{p}(\mu)$ of analytic functions f on D satisfying $f^{\prime} \in L^{p}(D, \mu)$. Also, we will find some conditions such that $\int_{D} \frac{d \mu(z)}{\left(1-|z|^{2}\right)^{p}}<\infty$.

1. Introduction

Let D be the open unit disk in the complex plane \mathbb{C}. Let $H(D)$ be the space of all analytic functions on the unit disk D. The Bloch space \mathfrak{B} of D consists of analytic functions f on D such that

$$
\sup \left\{\left(1-|z|^{2}\right)\left|f^{\prime}(z)\right|: z \in D\right\}<\infty
$$

For $0<\alpha<\infty$, a function $f \in H(D)$ is said to be in the α-Bloch space \mathfrak{B}_{α} if

$$
\|f\|_{\alpha}=\sup _{z \in D}\left|f^{\prime}(z)\right|\left(1-|z|^{2}\right)^{\alpha}<\infty
$$

Let μ be a positive Borel measure on the unit disk D. For $0<p<\infty$, we denote $D_{p}(\mu)$ as the space of analytic functions on D satisfying

$$
\|f\|_{\mu}=\left(\int_{D}\left|f^{\prime}(z)\right|^{p} d \mu(z)\right)^{1 / p}<\infty
$$

It is well known that inclusion map from \mathfrak{B} to $D_{p}(\mu)$ is bounded if and only if $\int_{D} \frac{d \mu(z)}{\left(1-|z|^{2}\right)^{p}}<\infty$ (See [2]). In this paper, we will investigate properties of some sequence in \mathfrak{B}_{α} related with $D_{p}(\mu)$ such that $\int_{D} \frac{d \mu(z)}{\left(1-|z|^{2}\right)^{p}}<\infty$.

[^0]In this paper, we will use the symbol C to denote a finite positive real number which does not depend on variables and may depend on some norms, not necessarily the same at each occurrence.

Let N be the set of natural numbers. Let $\left\{f_{n}\right\}$ be a sequence in \mathfrak{B}_{α} such that $\sup \left\{\left\|f_{n}\right\|_{\alpha}: n \in N\right\}<C$ for some positive constant C. In section 2, we will show that if μ is the Borel measure on D such that $\int_{D} \frac{d \mu(z)}{\left(1-|z|^{2}\right)^{p \alpha}}<\infty$, then $\left\{f_{n}\right\}$ has convergent subsequence in $D_{p}(\mu)$.

Let $r_{n} \in(0,1), 0<\alpha \leq 1$ and $\lim _{n \rightarrow \infty} r_{n}=1$. Let $f_{n, t}(z)=$ $\sum_{k=1}^{\infty} a_{k} z^{2^{k}}$ where $a_{k}=2^{k(\alpha-1)} r_{n}{ }^{2^{k}-1} e^{i 2^{k} t}$. Then $f_{n, t} \in \mathfrak{B}_{\alpha}$. In section 3 , we will show that if $f_{n, t} \in D_{p \beta}(\mu)$ for $\beta>1$ and $p>0$, then $\int_{D} \frac{d \mu(z)}{\left(1-\left(r_{n}|z|\right)^{2}\right)^{p}}<\infty$. In particular, we will show that if $f_{n, t} \in D_{p \beta}(\mu)$ and $\left\|f_{n, t}\right\|_{\mu}<C$ where C is independent of n and t, then $\int_{D} \frac{d \mu(z)}{\left(1-|z|^{2}\right)^{p}}<\infty$.
2. Some sequence of functions in \mathfrak{B}_{α} which converge in $D_{p}(\mu)$

Theorem 2.1. Suppose that $f_{n} \in H(D)$ for $n \in N$ and if $\left\{f_{n}\right\}$ converges uniformly to f on compact subsets of D. Then $f \in H(D)$ and $\left\{f_{n}^{\prime}\right\}$ converges uniformly to f^{\prime} on compact subsets of D.

Proof. See 10.28 Theorem in [9].
THEOREM 2.2. If K is compact, if $f_{n} \in C(K)$ for $n \in N$ and if $\left\{f_{n}\right\}$ is pointwise bounded and equicontinuous on K, then
(1) $\left\{f_{n}\right\}$ is uniformly bounded on K,
(2) $\left\{f_{n}\right\}$ contains a uniformly convergent subsequence.

Proof. See 7.25 Theorem in [10].
Lemma 2.3. Let $\alpha>0$ and $\left\{f_{n}\right\}$ be a bounded sequence in \mathfrak{B}_{α} such that $\sup \left\{\left\|f_{n}\right\|_{\alpha}: n \in N\right\}<C$ for some positive constant C. Then $\left\{f_{n}\right\}$ is equicontinuous on $D_{r}=\{z:|z| \leq r<1\}$.

Proof. For $z, w \in D_{r}$ and $0 \leq t \leq 1$,

$$
|z+t(w-z)|=|(1-t) z+t w| \leq(1-t)|z|+t|w| \leq r
$$

For all $n \in N$,

$$
\begin{aligned}
& \left|f_{n}(z)-f_{n}(w)\right| \\
& =\left|\int_{0}^{1} f_{n}^{\prime}(z+t(w-z))(w-z) d t\right| \\
& \leq|w-z| \int_{0}^{1}\left|f_{n}^{\prime}(z+t(w-z))\right| \frac{\left(1-|z+t(w-z)|^{2}\right)^{\alpha}}{\left(1-|z+t(w-z)|^{2}\right)^{\alpha}} d t \\
& \leq|w-z|\left\|f_{n}\right\|_{\alpha} \int_{0}^{1} \frac{1}{\left(1-|z+t(w-z)|^{2}\right)^{\alpha}} d t \\
& \leq C|w-z| \frac{1}{\left(1-r^{2}\right)^{\alpha}}
\end{aligned}
$$

This implies that $\left\{f_{n}\right\}$ is equicontinuous on D_{r}.
Theorem 2.4. Let $\alpha>0$ and $\left\{f_{n}\right\}$ be a bounded sequence in \mathfrak{B}_{α} such that $\sup \left\{\left\|f_{n}\right\|_{\alpha}: n \in N\right\}<C$ for some constant C. Then there is a function f in \mathfrak{B}_{α} such that some subsequence of $\left\{f_{n}^{\prime}\right\}$ converges uniformly to f^{\prime} on compact subsets of D and $\|f\|_{\alpha} \leq C$.

Proof. For every $f_{n} \in \mathfrak{B}_{\alpha}$,

$$
\begin{aligned}
\left|f_{n}(z)-f_{n}(0)\right| & =\left|\int_{0}^{1} f_{n}^{\prime}(t z) z d t\right| \\
& \leq\left\|f_{n}\right\|_{\alpha} \frac{1}{\left(1-|z|^{2}\right)^{\alpha}} \\
& \leq C\left(1-|z|^{2}\right)^{-\alpha}
\end{aligned}
$$

Thus $\left\{f_{n}\right\}$ is pointwise bounded and equicontinuous on compact subset K of D. By Theorem 2.2, $\left\{f_{n}\right\}$ contains a uniformly convergent subsequence which converges to f. Without loss of generality, we may assume that the sequence $\left\{f_{n}\right\}$ itself converges to f. By Theorem 2.1, $\left\{f_{n}^{\prime}\right\}$ converges to f^{\prime} on compact subsets of D.

Suppose that $\sup _{z \in D} f^{\prime}(z)\left(1-|z|^{2}\right)^{\alpha}>C+\epsilon$ for some $\epsilon>0$. Then there exists z_{0} such that $f^{\prime}\left(z_{0}\right)\left(1-\left|z_{0}\right|^{2}\right)^{\alpha}>C+\epsilon$. Since $f_{n}^{\prime}\left(z_{0}\right)(1-$ $\left.\left|z_{0}\right|^{2}\right)^{\alpha} \rightarrow f^{\prime}\left(z_{0}\right)\left(1-\left|z_{0}\right|^{2}\right)^{\alpha}$, we can find n_{0} such that if $n>n_{0}$ then $f_{n}^{\prime}\left(z_{0}\right)\left(1-\left|z_{0}\right|^{2}\right)^{\alpha}>C+\epsilon / 2$. This is a contradiction. Hence

$$
\sup _{z \in D} f^{\prime}(z)\left(1-|z|^{2}\right)^{\alpha} \leq C
$$

This implies that $f \in \mathfrak{B}_{\alpha}$ and $\|f\|_{\alpha} \leq C$.
Theorem 2.5. Let $\alpha>0$ and $\left\{f_{n}\right\}$ be a sequence in \mathfrak{B}_{α} such that $\sup \left\{\left\|f_{n}\right\|_{\alpha}: n \in N\right\}<C$ for some constant C. Let μ be the positive

Borel measure on D such that $\int_{D} \frac{d \mu(z)}{\left(1-|z|^{2}\right)^{p \alpha}}<\infty$ where $p>0$. Then $\left\{f_{n}\right\}$ has convergent subsequence in $D_{p}(\mu)$.

Proof. By the Theorem 2.4, $\left\{f_{n}^{\prime}\right\}$ converges to f^{\prime} on every compact subset of D.

$$
\begin{aligned}
\mid f_{n}^{\prime}(z) & -\left.f^{\prime}(z)\right|^{p} \leq\left(2 \max \left(\left|f_{n}^{\prime}(z)\right|,\left|f^{\prime}(z)\right|\right)\right)^{p} \\
& \leq 2^{p}\left(\left|f_{n}^{\prime}(z)\right|^{p}+\left|f^{\prime}(z)\right|^{p}\right) \\
& \leq 2^{p}\left(\left|f_{n}^{\prime}(z)\right|^{p}\left(1-|z|^{2}\right)^{p \alpha}+\left|f^{\prime}(z)\right|^{p}\left(1-|z|^{2}\right)^{p \alpha}\right)\left(1-|z|^{2}\right)^{-p \alpha} \\
& \leq 2^{p}\left(\left\|f_{n}\right\|_{\alpha}^{p}+\|f\|_{\alpha}^{p}\right)\left(1-|z|^{2}\right)^{-p \alpha} \\
& \leq 2^{p}\left(C^{p}+C^{p}\right)\left(1-|z|^{2}\right)^{-p \alpha} .
\end{aligned}
$$

By the Lebesgue dominated convergence theorem,

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left\|f_{n}-f\right\|_{\mu} & =\left(\lim _{n \rightarrow \infty} \int_{D}\left|f_{n}^{\prime}(z)-f^{\prime}(z)\right|^{p} d \mu(z)\right)^{1 / p} \\
& =\left(\int_{D} \lim _{n \rightarrow \infty}\left|f_{n}^{\prime}(z)-f^{\prime}(z)\right|^{p} d \mu(z)\right)^{1 / p} \\
& =0
\end{aligned}
$$

3. Some condition for which $\int_{D} \frac{d \mu(z)}{\left(1-(|z|)^{2}\right)^{p}}$ is finite

Lemma 3.1. For $0<r<1$ and $n \in N$,

$$
\left(2^{n}+1\right)\left(r^{2}\right)^{2^{n}}+\cdots+2^{n+1}\left(r^{2}\right)^{2^{n+1}-1}<2^{2 n+1} r^{2^{n+1}}
$$

Proof. For all $n \in N$,

$$
\begin{aligned}
\left(2^{n}+1\right)+\left(2^{n}+2\right)+\cdots+2^{n+1} & =\frac{2^{n+1}\left(2^{n+1}+1\right)}{2}-\frac{2^{n}\left(2^{n}+1\right)}{2} \\
& =2^{n}\left(2^{n+1}+1\right)-2^{n-1}\left(2^{n}+1\right) .
\end{aligned}
$$

Since

$$
2^{2 n+1}-2^{n}\left(2^{n+1}+1\right)+2^{n-1}\left(2^{n}+1\right)=2^{n-1}\left(2^{n}-1\right)>0
$$

and $0<r<1$,

$$
\left(2^{n}+1\right)\left(r^{2}\right)^{2^{n}}+\cdots+2^{n+1}\left(r^{2}\right)^{2^{n+1}-1}<2^{2 n+1} r^{2^{n+1}}
$$

for all $n \in N$.

Theorem 3.2. For $0<r<1$ and $n \in N$,

$$
\frac{1}{\left(1-r^{2}\right)^{2}}<2\left(1+\sum_{n=0}^{\infty} 2^{2 n} r^{2^{n+1}}\right)
$$

Proof. By Lemma 3.1,

$$
\begin{aligned}
& 1+\sum_{n=0}^{\infty} 2^{2 n} r^{2^{n+1}} \\
&=\frac{1}{2}\left\{2+\sum_{n=0}^{\infty} 2^{2 n+1} r^{2^{n+1}}\right\} \\
&>\frac{1}{2}\left\{2+\sum_{n=0}^{\infty}\left\{\left(2^{n}+1\right)\left(r^{2}\right)^{2^{n}}+\cdots+2^{n+1}\left(r^{2}\right)^{2^{n+1}-1}\right\}\right\} \\
& \geq \frac{1}{2}\left\{1+2 r^{2}+3\left(r^{2}\right)^{2}+4\left(r^{2}\right)^{3}+5\left(r^{2}\right)^{4}+6\left(r^{2}\right)^{5}+\cdots\right\} \\
&=\frac{1}{2} \sum_{n=0}^{\infty}(n+1)\left(r^{2}\right)^{n} \\
&=\frac{1}{2} \sum_{n=0}^{\infty} \frac{\Gamma(n+2)}{n!\Gamma(2)}\left(r^{2}\right)^{n} \\
&=\frac{1}{2} \frac{1}{\left(1-r^{2}\right)^{2}}
\end{aligned}
$$

Theorem 3.3. Suppose that $\left\{n_{k}\right\}$ is an increasing sequence of positive integers such that $\frac{n_{k+1}}{n_{k}} \geq \lambda>1$ for all k. Let $0<p<\infty$. Then there is a positive constant C depending on p and λ such that
$C^{-1}\left(\sum_{k=1}^{m}\left|a_{k}\right|^{2}\right)^{1 / 2} \leq\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\sum_{k=1}^{m} a_{k} e^{i n_{k} \theta}\right|^{p} d \theta\right)^{1 / p} \leq C\left(\sum_{k=1}^{m}\left|a_{k}\right|^{2}\right)^{1 / 2}$ for any scalars $a_{1}, a_{2}, \cdots, a_{m}$ and $m=1,2, \cdots$.

Proof. See [11].
ThEOREM 3.4. Let $\left\{\lambda_{n}\right\}$ be a sequence of positive integers satisfying

$$
1<\lambda \leq \frac{\lambda_{n+1}}{\lambda_{n}} \leq C<+\infty, n \geq 1
$$

Suppose $\alpha>0$ and $f(z)=\sum_{n=1}^{\infty} a_{n} z^{\lambda_{n}}$. Then $f \in \mathfrak{B}_{\alpha}$ if and only if $a_{n}=O\left(\lambda_{n}^{\alpha-1}\right)$ as $n \rightarrow \infty$.

Proof. See Theorem 21 in [12].

Let $\alpha>0, r_{n} \in(0,1)$ and $\lim _{n \rightarrow \infty} r_{n}=1$. Let $f_{n, t}(z)=\sum_{k=1}^{\infty} a_{k} z^{2^{k}}$ where $a_{k}=2^{k(\alpha-1)} r_{n}{ }^{2^{k}-1} e^{i 2^{k} t}$. Since $r_{n}{ }^{2^{k}-1} \rightarrow 0$ as $k \rightarrow \infty, f_{n, t} \in \mathfrak{B}_{\alpha}$ by Theorem 3.4.

Theorem 3.5. For $\beta>1$ and $p>0$,

$$
\left(\sum_{k=1}^{\infty} 2^{2 k}\left(r_{n}|z|\right)^{2\left(2^{k}-1\right) \beta}\right)^{p / 2} \leq C \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f_{n, t}^{\prime}(z)\right|^{p \beta} d t
$$

for some constant C.

Proof.

$$
\begin{aligned}
f_{n, t}^{\prime}(z) & =\sum_{k=1}^{\infty} a_{k} 2^{k} z^{2^{k}-1} \\
& =\sum_{k=1}^{\infty} 2^{k / \beta} r_{n}^{2^{k}-1} e^{i 2^{k} t} z^{2^{k}-1} \\
& =\sum_{k=1}^{\infty} 2^{k / \beta}\left(r_{n} z\right)^{2^{k}-1} e^{i 2^{k} t}
\end{aligned}
$$

By Theorem 3.3,

$$
\begin{aligned}
& \left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\sum_{k=1}^{\infty} 2^{k / \beta}\left(r_{n} z\right)^{2^{k}-1} e^{i 2^{k} t}\right|^{p} d t\right)^{\beta} \\
& =\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\sum_{k=1}^{\infty} 2^{k / \beta}\left(r_{n} z\right)^{2^{k}-1} e^{i 2^{k} t}\right|^{p} d t\right)^{\frac{1}{p} p \beta} \\
& \geq C^{-p \beta} \lim _{m \rightarrow \infty}\left(\sum_{k=1}^{m}\left(2^{k / \beta}\left(r_{n}|z|\right)^{2^{k}-1}\right)^{2}\right)^{p \beta / 2}
\end{aligned}
$$

This implies that

$$
\begin{aligned}
& \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f_{n, t}^{\prime}(z)\right|^{p \beta} d t \\
& =\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\sum_{k=1}^{\infty} 2^{k / \beta}\left(r_{n} z\right)^{2^{k}-1} e^{i 2^{k} t}\right|^{p \beta} d t\right)\left(\frac{1}{2 \pi} \int_{0}^{2 \pi} d t\right) \\
& \geq\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\sum_{k=1}^{\infty} 2^{k / \beta}\left(r_{n} z\right)^{2^{k}-1} e^{i 2^{k} t}\right|^{p} d t\right)^{\beta} \\
& \geq C^{-p \beta} \lim _{m \rightarrow \infty}\left(\sum_{k=1}^{m}\left(2^{k / \beta}\left(r_{n}|z|\right)^{2^{k}-1}\right)^{2}\right)^{p \beta / 2}
\end{aligned}
$$

where the first inequality follows from Hölder inequality. Since

$$
\begin{aligned}
(x+y)^{\beta} & =(x+y)(x+y)^{\beta-1} \\
& =x(x+y)^{\beta-1}+y(x+y)^{\beta-1} \\
& \geq x^{\beta}+y^{\beta}
\end{aligned}
$$

for all $x, y>0$,

$$
\begin{aligned}
& \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f_{n, t}^{\prime}(z)\right|^{p \beta} d t \\
& \geq C^{-p \beta} \lim _{m \rightarrow \infty}\left(\sum_{k=1}^{m}\left(2^{k / \beta}\left(r_{n}|z|\right)^{2^{k}-1}\right)^{2}\right)^{p \beta / 2} \\
& \geq C^{-p \beta} \lim _{m \rightarrow \infty}\left(\sum_{k=1}^{m} 2^{2 k}\left(r_{n}|z|\right)^{2\left(2^{k}-1\right) \beta}\right)^{p / 2} \\
& =C^{-p \beta}\left(\sum_{k=1}^{\infty} 2^{2 k}\left(r_{n}|z|\right)^{2\left(2^{k}-1\right) \beta}\right)^{p / 2}
\end{aligned}
$$

Lemma 3.6. If $\beta>1$ and $r_{n} \in(0,1)$, then

$$
1-\left(r_{n}|z|\right)^{2}<1-\left(r_{n}|z|\right)^{2 \beta}<C\left(1-\left(r_{n}|z|\right)^{2}\right)
$$

for some constant C.
Proof. Since $r_{n}|z|<1,1-\left(r_{n}|z|\right)^{2}<1-\left(r_{n}|z|\right)^{2 \beta}$.

$$
\begin{aligned}
& \frac{1-\left(r_{n}|z|\right)^{2 \beta}}{1-\left(r_{n}|z|\right)^{2}}=\frac{\left(1-\left(r_{n}|z|\right)^{\beta}\right)\left(1+\left(r_{n}|z|\right)^{\beta}\right)}{\left(1-\left(r_{n}|z|\right)\right)\left(1+\left(r_{n}|z|\right)\right)} \\
& \leq \frac{2\left(1-\left(r_{n}|z|\right)^{\beta}\right)}{1-\left(r_{n}|z|\right)} \\
& \leq 2 \frac{\left(1-\left(r_{n}|z|\right)^{[\beta]+1}\right)}{1-\left(r_{n}|z|\right)} \\
& \leq 2 \frac{\left(1-r_{n}|z|\right)\left(1+r_{n}|z|+\cdots+\left(r_{n}|z|\right)^{[\beta]}\right)}{1-\left(r_{n}|z|\right)} \\
& \leq 2([\beta]+1) .
\end{aligned}
$$

Above two results imply that

$$
1-\left(r_{n}|z|\right)^{2}<1-\left(r_{n}|z|\right)^{2 \beta}<C\left(1-\left(r_{n}|z|\right)^{2}\right)
$$

for $\beta>1$ and $r_{n} \in(0,1)$.
Theorem 3.7. Let $\beta>1$ and $p>0$. If $f_{n, t} \in D_{p \beta}(\mu)$, then

$$
\int_{D} \frac{d \mu(z)}{\left(1-\left(r_{n}|z|\right)^{2}\right)^{p}}<\infty .
$$

Proof. By Theorem 3.2 and Lemma 3.6,

$$
\begin{aligned}
& \sum_{k=1}^{\infty} 2^{2 k}\left(r_{n}|z|\right)^{2\left(2^{k}-1\right) \beta}+1+\left(r_{n}|z|\right)^{2 \beta} \\
& \geq 1+\sum_{k=0}^{\infty} 2^{2 k}\left(r_{n}|z|\right)^{2 k+1} \beta \\
& \geq \frac{1}{2} \frac{1}{\left(1-\left(r_{n}|z|\right)^{2 \beta}\right)^{2}} \\
& \geq C \frac{1}{\left(1-\left(r_{n}|z|\right)^{2}\right)^{2}}
\end{aligned}
$$

for some constant C.

Above result and Theorem 3.5 imply that

$$
\begin{aligned}
& \frac{1}{\left(1-\left(r_{n}|z|\right)^{2}\right)^{p}} \\
& \leq C\left(\sum_{k=1}^{\infty} 2^{2 k}\left(r_{n}|z|\right)^{2\left(2^{k}-1\right) \beta}\right)^{p / 2} \\
& \leq C \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f_{n, t}^{\prime}(z)\right|^{p \beta} d t
\end{aligned}
$$

This implies that

$$
\begin{aligned}
& \int_{D} \frac{d \mu(z)}{\left(1-\left(r_{n}|z|\right)^{2}\right)^{p}} \\
& \leq \int_{D} C \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f_{n, t}^{\prime}(z)\right|^{p \beta} d t d \mu(z) \\
& \leq C \frac{1}{2 \pi} \int_{0}^{2 \pi} \int_{D}\left|f_{n, t}^{\prime}(z)\right|^{p \beta} d \mu(z) d t
\end{aligned}
$$

Corollary 3.8. If there is a constant C such that $\int_{D}\left|f_{n, t}^{\prime}(z)\right|^{p \beta} d \mu(z)$ $\leq C$ where C is a constant independent of n and t, then $\int_{D} \frac{d \mu(z)}{\left(1-|z|^{2}\right)^{p}}<\infty$.

Proof. This Corollary follows from Theorem 3.7 and Fatou's Lemma.

References

[1] J. Anderson, Bloch functions: The Basic theory, operators and function theory, S. Power. editor, D. Reidel(1985).
[2] J. Arazy, S. D. Fisher, and J. Peetre, Möbius invariant function spaces, J. Reine Angew. Math. 363 (1985), 110-145.
[3] S. Axler, The Bergman spaces, the Bloch space and commutators of multiplication operators, Duke Math. J. 53 (1986), 315-332.
[4] K. S. Choi, Lipschitz type inequality in weighted Bloch spaces \mathfrak{B}_{q}, J. Korean Math. Soc. 39 (2002), no. 2, 277-287.
[5] K. S. Choi, Little Hankel operators on weighted Bloch spaces, Commun. Korean Math. Soc. 18 (2003), no. 3, 469-479.
[6] K. S. Choi, Notes on Carleson measures on bounded symmetric domain, Commun. Korean Math. Soc. 22 (2007), no. 1, 65-74.
[7] K. T. Hahn, Holomorphic mappings of the hyperbolic space into the complex Euclidean space and Bloch theorem, Canadian J. Math. 27 (1975), 446-458.
[8] Z. h. Hu and S. S. Wang, Composition operators on Bloch-type spaces, PROC. Roy. Soc. Edinburgh Sect. A 135 (2005) 1229-1239.
[9] W. Rudin, Real and complex analysis, Springer Verlag, New York, 1980.
[10] W. Rudin, Principles of mathematical analysis, Springer Verlag, New York, 1980.
[11] A. Zygmund, Trigonometric series, Cambridge Univ. Press, Cambridge, UK, 1959.
[12] K. H. Zhu, Bloch type spaces of analytic functions, Rocky Mountain J. Math. 23 (1993), 1143-1177
*
Department of Information Security Konyang University
Nonsan 320-711, Republic of Korea
E-mail: gtyang@konyang.ac.kr
**
Department of Information Security
Konyang University
Nonsan 320-711, Republic of Korea
E-mail: ksc@konyang.ac.kr

[^0]: Received May 23, 2012; Accepted July 19, 2012.
 2010 Mathematics Subject Classification: Primary 30H05; Secondary $28 B 15$.
 Key words and phrases: Bloch space, α-Bloch space.
 Correspondence should be addressed to Ki Seong Choi, ksc@konyang.ac.kr.

